Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae.
نویسندگان
چکیده
Three Candida albicans genes, designated FCR (for fluconazole resistance), have been isolated by their ability to complement the fluconazole (FCZ) hypersensitivity of a Saccharomyces cerevisiae mutant lacking the transcription factors Pdr1p and Pdr3p. Overexpression of any of the three FCR genes in the pdr1 pdr3 mutant resulted in increased resistance of the cells to FCZ and cycloheximide and in increased expression of PDR5, a gene coding for a drug efflux transporter of the ATP-binding cassette superfamily and whose transcription is under the control of Pdr1p and Pdr3p. Deletion of PDR5 in the pdr1 pdr3 strain completely abrogated the ability of the three FCR genes to confer FCZ resistance, demonstrating that PDR5 is required for FCR-mediated FCZ resistance in S. cerevisiae. The FCR1 gene encodes a putative 517-amino-acid protein with an N-terminal Zn2C6-type zinc finger motif homologous to that found in fungal zinc cluster proteins, including S. cerevisiae Pdr1p and Pdr3p. We have constructed a C. albicans CAI4-derived mutant strain carrying a homozygous deletion of the FCR1 gene and analyzed its ability to grow in the presence of FCZ. We found that the fcr1Delta/fcr1Delta mutant displays hyperresistance to FCZ and other antifungal drugs compared to the parental CAI4 strain. This hyperresistance could be reversed to wild-type levels by reintroduction of a plasmid-borne copy of FCR1 into the fcr1Delta/fcr1Delta mutant. Taken together, our results indicate that the FCR1 gene behaves as a negative regulator of drug resistance in C. albicans and constitute the first evidence that FCZ resistance can result from the inactivation of a regulatory factor such as Fcr1p.
منابع مشابه
Responses of pathogenic and nonpathogenic yeast species to steroids reveal the functioning and evolution of multidrug resistance transcriptional networks.
Steroids are known to induce pleiotropic drug resistance states in hemiascomycetes, with tremendous potential consequences for human fungal infections. Our analysis of gene expression in Saccharomyces cerevisiae and Candida albicans cells subjected to three different concentrations of progesterone revealed that their pleiotropic drug resistance (PDR) networks were strikingly sensitive to steroi...
متن کاملMembrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in saccharomyces cerevisiae.
The Saccharomyces cerevisiae zinc cluster transcription factors Pdr1 and Pdr3 mediate general drug resistance to many cytotoxic substances also known as pleiotropic drug resistance (PDR). The regulatory mechanisms that activate Pdr1 and Pdr3 in response to the various xenobiotics are poorly understood. In this study, we report that exposure of yeast cells to 2,4-dichlorophenol (DCP), benzyl alc...
متن کاملEfflux-mediated resistance to fluconazole could be modulated by sterol homeostasis in Saccharomyces cerevisiae.
Saccharomyces cerevisiae has long been used as a model organism in the study of the ergosterol pathway and its inhibitors. The Pdr5 protein (Pdr5p), an ATP binding cassette transporter, plays an important role in active efflux of azole antifungals and therefore in azole sensitivity and resistance in S. cerevisiae. We have identified the Fluconazole Dominant Resistance-1 (FDR-1) mutant, which ha...
متن کاملPlasma Membrane Translocation of Fluorescent-labeled Phosphatidylethanolamine Is Controlled by Transcription Regulators, PDR1 and PDR3
The transcription regulators, PDR1 and PDR3, have been shown to activate the transcription of numerous genes involved in a wide range of functions, including resistance to physical and chemical stress, membrane transport, and organelle function in Saccharomyces cerevisiae. We report here that PDR1 and PDR3 also regulate the transcription of one or more undetermined genes that translocate endoge...
متن کاملSTB5 is a negative regulator of azole resistance in Candida glabrata.
The opportunistic yeast pathogen Candida glabrata is recognized for its ability to acquire resistance during prolonged treatment with azole antifungals (J. E. Bennett, K. Izumikawa, and K. A. Marr. Antimicrob. Agents Chemother. 48:1773-1777, 2004). Resistance to azoles is largely mediated by the transcription factor PDR1, resulting in the upregulation of ATP-binding cassette (ABC) transporter p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 181 1 شماره
صفحات -
تاریخ انتشار 1999